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Fungal effector proteins function at the interfaces of diverse
interactions between fungi and their plant and animal hosts,
facilitating interactions that are pathogenic or mutualistic.
Recent advancements in protein structure prediction have
significantly accelerated the identification and functional
predictions of these rapidly evolving effector proteins. This
development enables scientists to generate testable
hypotheses for functional validation using experimental
approaches. Research frontiers in effector biology include
understanding pathways through which effector proteins are
secreted or translocated into host cells, their roles in
manipulating host microbiomes, and their contribution to
interacting with host immunity. Comparative effector repertoires
among different fungal-host interactions can highlight unique
adaptations, providing insights for the development of novel
antifungal therapies and biocontrol strategies.
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Introduction

Fungi are a vital component of our ecosystem, significantly
impacting agricultural productivity and public health as
symbionts and pathogens of both plant and animal hosts [1].
Climate change has intensified the pressure caused by
fungal diseases due to the adaptability of many fungal pa-
thogens and their resilience in changing environments [2].
Key players involved in host—fungal interactions are effec-
tors, defined as secreted proteins or small molecules that
interact with hosts and facilitate colonization [3]. Char-
acterized effectors include proteins, RNAs, and other small
molecules. For this review, we focus on effector proteins by
summarizing current knowledge of fungal effectors, present
tools, and diverse challenges. We will conclude by offering
emerging perspectives on differentiating bona fide effectors
involved in host—fungal interactions from enzymes used to
support fungal growth and the importance of recognizing
different effector profiles for distinct interactions with dif-
ferent hosts.

Fungal effectors and their involvement in diverse
host-fungal interactions

Effector proteins that are involved in plant and mam-
malian pathogenic and mutualistic interactions can be
further categorized to apoplastic effectors that function
in the extracellular space and cytoplasmic effectors that
translocate into host cells (IFigure 1). In addition to in-
teract with host immunity directly, effectors can also
manipulate host microbiomes and influence the out-
comes of host—fungal interactions.

Effector proteins in plant pathogenic fungi
The most abundant and highly conserved apoplastic ef-
fectors among plant pathogenic fungi are plant cell
wall-degrading enzymes (CWDEs). Other well-char-
acterized apoplastic effectors in fungi include LysM do-
main—containing proteins that contribute to fungal
evasion of chitin-triggered plant immunity recognition by
binding and masking the fungal cell wall chitin [4]. Other
examples include alkalinizing peptides produced by the
Fusarium oxysporum that interact with the plant receptor-
like kinase FERONIA in the apoplastic space to promote
infection [5] and Sn'T'ox3 from Parastagonospora nodorum
that inhibits the PR1 C-terminal peptide to prevent PR1-
mediated defense in 77riticum aestioum |6).
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Fungal conserved mechanisms of host colonization depicted in a plant cell. Depicted is a fungal hypha colonizing the apoplastic space of a plant cell,
with examples of apoplastic and cytoplasmic secreted effectors and their host targets. Apoplastic effectors may function to (1) evade chitin-triggered
plant immunity recognition, (2) degrade plant cell wall, or (3) bind to host proteins to change microenvironment or alter host defenses and promote
colonization. Cytoplasmic effectors may localize to subcellular compartments to (4) perturb defense signaling pathways through mitochondria or
chloroplasts, (5) reprogram transcription, or (6) target or mimic host proteasome machinery to regulate plant immune responses.

Functioning within the intracellular space of the host,
cytoplasmic effectors commonly contribute to fungal
pathogenesis by targeting plant organelles to manipulate
diverse cellular processes [7]. For instance, MoHTRI1
and MoHTR2 reported in Magnaporthe oryzae (8] and
Nkd1 described in Ustilago maydis 9] can target host
nuclei to reprogram host transcription. The host mi-
tochondria and chloroplast, two central organelles in
plant cells, are also common targets. The M. oryzae ef-
fector Avr-Pita suppresses host innate immunity by
disrupting Reactive oxygen species (ROS) metabolism
in mitochondria [10]. Similarly, the wheat stripe rust
fungus Puccinia striiformis secrets the haustorium-specific
effector (Pst_12806) that can be translocated into host
cell and enter plant chloroplasts and interacts with host
protein and promote disease [11]. Some effectors, such
as Osp24 in Fusarium graminearum, can target the host
proteasome, interfere with host protein homeostasis and
evade host defenses [12].

It is well known that fungi coexist with diverse mi-
crobes. Recently, fungal effectors have been found to
impact disease outcomes by influencing the composition
of the phytobiome. Examples include Verticillium dahliae
VdAvel, which exerts antimicrobial activity [13], and a
Crinkler effector in Phytophthora spp. that suppresses

plant-associated actinobacteria [14], manipulating the
host microbiota to facilitate host colonization and pro-
mote diseases.

Effector proteins in mutualistic plant-fungal
interactions

Far less studied compared with those of pathogenic in-
teractions, both apolastic and cytoplasmic effectors also
play essential roles in mutualistic interactions, including
mycorrhiza and mutualistic endophytes.

Two well-studied types of mycorrhizal fungi include the
arbuscular mycorrhizal fungi (AMF), which colonize plant
roots intracellularly, and the ectomycorrhizal fungi (EMF),
which maintain a symbiotic relationship extracellularly.
Like pathogenic interactions, a LLysM-containing apoplastic
effector (RiISLM) was reported to bind to fungal chitin to
evade plant chitin-triggered immune responses for the
AMF symbiosis [15]. The first functionally characterized
AMF (Rhizophagus irregularis) cytoplasmic effector is SP7,
which interacts with a transcription factor ERF19 to at-
tenuate plant immune responses [16]. AMF nucleus—loca-
lized Nuclear Localized Effectorl (RiINLE1) [17] and
Crinkler effectorl (RiCRN1) [18] were reported to enhance
fungal colonization and are essential for arbuscule
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development. In EMF, the functionally characterized ef-
fector is the Mycorrhiza-induced Small Secreted Protein7
(MiSSP7) in Laccaria bicolor. By interacting with the host
Jasmonic Acid (JA)-perception protein complex, this cyto-
plasmic effector alters the JA-signaling network within host
nuclei and promotes the symbiotic interaction [19].

Like mycorrhizal fungi, endophytic fungi produce ef-
fectors to establish endophytic interactions. For ex-
ample, the FEpichloé festucae effector Efe-AfpA was
identified as a key player in the mutualistic interaction
[20]. The expression of numerous extracellular proteins
from a Trichoderma guizhouense endophytic strain NJAU
strain was upregulated after inoculating cucumber
plants, including CWDEs, expansion-like proteins, and
peroxidases [21]. A comprehensive comparison of 44
endophytic versus diverse pathogenic Fusarium oxy-
sporum strains identified 66 candidate endophytic-en-
coding effectors [22].

As reported in pathogenic fungi, effectors from an en-
dophyte Serendipita vermifera provide interkingdom sy-
nergistic beneficial effects by suppressing plant defense
and interacting with root-colonizing microbiota through
antimicrobial activities [23].

Effector proteins in human pathogenic fungi
Most effectors reported so far are apoplastic, but both
apoplastic and cytoplasmic effectors are involved in
fungal-human interactions.

Like phytopathogenic fungi, human pathogenic fungi
also employ LysM-domain-containing effectors to bind
to fungal chitin and avoid host recognition. For instance,
LysM1 and LysM2 — two LysM-domain-containing
effectors reported in the dermatophyte fungus
Trichophyton rubrum — can bind to fungal chitin to evade
host immunity [24]. Lacking plant CWDEs, human pa-
thogenic fungi often secrete proteases to facilitate host
colonization. For instance, the secretion of metallopro-
tease and cysteine proteases from the opportunistic
fungal pathogen Aspergillus fumigatus was involved in
altering the human airway respiratory epithelial cells and
inducing host proinflammatory responses [25]. Another
commonly used mechanism between plant and human
fungal pathogens is to produce effectors that interact
with host receptors. Reported in the human pathogen
Cryptococcus neoformans, the effector CPL1 interacts with
Toll-like receptor4, a key mammalian innate immunity
activator, to enhance host macrophage polarization and
promote fungal infection [26]. The other interesting
observation is that the A. fumigatus surface—exposed ef-
fector HscA interacts directly with p11, a host calcium-
binding EF-hand protein, to redirect fungal-containing
phagosomes to a nondegradative pathway, avoiding its
phagolysosomal killing [27]. So far, the only cytoplasmic
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effector reported among human fungal pathogens is the
Histoplasma capsulatum calcium-binding protein 1, which
forms an effector complex within the cytosol and drives
macrophage lysis [28].

Interestingly, as part of the intestinal microbiome, some
commensal fungal species also use fungal effectors. For
instance, candidalysin, a secreted peptide processed
from a secreted protein Ecel, can manipulate the com-
position of intestinal bacterial and fungal communities
and promote the establishment of the commensal colo-
nization of Candida albican [29).

Effector delivery

Another interesting topic in effector biology is the de-
livery mechanisms through which effector proteins are
secreted or translocated into host cells. The discovery of
bacterial effector secretion systems, first reported in the
late 1990s and now comprising over 12 reported systems
[30], foreshadows the potential complexity of fungal ef-
fector delivery. An extracellular protein complex related
to fungal virulence was identified in U. maydis [31]. While
apoplastic effectors are secreted through the conventional
ER-Golgi secretion pathway, the translocation of cyto-
plasmic effectors seems to use a different delivery system.
Some cytoplasmic effectors have a codon-usage bias,
translating -AA over -AG codons via the 2-thiolation of
the wobble uridine on transfer RNA anticodon; this codon
bias could create ribosome pausing and consequentially
sort cytoplasmic effectors into unconventional secretory
pathways [32]. It has been documented that cytoplasmic
effectors PWL2 from M. oryzae [33] and RXLRs Piky-
tophthora infestans 34| are packaged into vesicle-like
compartments and translocated into host cells by ex-
ploiting host clathrin-mediated endocytosis.

Tools for studying fungal effectors

1) Identification: The identification of effectors and the
prediction of their localization is improving with the
ongoing refinement of machine learning models
trained on experimentally validated apoplastic and
cytoplasmic effectors [3]. Functional prediction can
be further implemented for sequence unrelated but
structurally similar effectors based on shared protein
structural folds [35%* 36]. Recognizing novel effectors
based on their rapid evolution using host and pa-
thogen interaction networks is another powerful ap-
proach [37]. The identification of effector pairs that
are clustered at the same genomic region, such as
SIX8-PSE1 in F. oxysporum [38] and the AvrLm10A-
AvtLm10B in Leprosphaeria maculans [39], illuminates
an approach in identifying ‘cooperating proteins’.

2) Functional importance: Understanding the biological
function of an effector requires experimental valida-
tion. Reverse genetics tools, such as RNAI silencing
and CRISPR knockout, are widely used to test the
direct involvement of an effector in a specific
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Figure 2
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Host-fungal interactions are illustrated using Fusarium oxysporum species complex. A cross-kingdom fungal pathogen, members within the F.
oxysporum species complex include (a) plant pathogens that cause vascular wilt diseases in many economically important plants, as illustrated using
the model plant Arabidopsis thaliana, (b) the endophytic strains that provide protective advantages to host plants and promote plant growth, and (c)
human pathogens that repress mammalian immunity and cause systematic infections. (d) Whole genome comparison among three F. oxysporum
genomes that represent a plant pathogen (Fo4287 in blue), an endophytic strain (Fo47 in green) and a human pathogen (FOMRL8996 in orange). All
three genomes share 11 conserved core chromosomes, while each carries unique set of accessory chromosomes highlighted in darker shades in each
genome (i) with low gene density (i) that contributed to the unique host-specific interactions. The inner circle indicates syntenic alignments using
Nucmer. (Xy: Xylem vessel, Pc: Pericyde, Ed: Endodermis, Cx: Cortex, Ep: Epidermis, Mp: Macrophage, Bs: Bloodstream).

(@) and (b) were adopted from Martinez-Soto D et al https://doi.org/2023 10.1094/MPMI-08-22-0166-SC and (c) was based on https://doi.org/10.

1371/journal.pone.0101999.

interaction. At the same time, heterologous expres-
sion systems that transiently express effectors in non-
native hosts have also been established as versatile
tools, especially when genetic engineering strategies
are not viable or when a rapid and systematic screen
of interactions between effector proteins and host is
desirable. To study effectors involved in plant—fungal
interactions, Agrobacterium tumefaciens—mediated het-
erologous expression in Nicotiana spp. is commonly
used. The induction or suppression of characteristic
plant immune responses indicate the potential in-
volvement of the candidate effector in the host—fungi
interaction, and the presence or absence of the signal
peptide can purposely direct the effectors into either
apoplastic or cytoplasmic space, respectively [40]. In
addition, fungal effectors can be delivered into host
cells through a bacterial type III secretion system, as
illustrated by the co-expression of effectors in the F.
cofi SHuffle strain with enhanced ability to express
cysteine-rich, disulfide-bonded proteins [41].

3) Interactive partners: Many effectors reprogram host
processes by interacting with host proteins, and there
are increasing tools to identify effector targets. Split-
reporter protein constructs, including GFP, RFP, and
tdTomato, are utilized to confirm the subcellular lo-
calization of cytoplasmic effectors [42]. Yeast two

hybridization and co-immunoprecipitation followed
by liquid chromatography-mass spectrometry are
proven tools to identify effector—partner complexes
[43]. The turbo biotin ligase tag (TurbolD) enables
in vivo proximity labeling and co-immunoprecipita-
tion [44]. Using crystallization, the structure of ef-
fector-receptor complexes can be resolved, as
demonstrated by the AVR-Pii-OsEx070F2 complex
in M. oryzae [45].

Challenges and potential solutions

Identifying bona fide effector proteins

The heterotrophic and absorptive lifestyle of fungi cre-
ates a heavy dependency on secreted enzymes to obtain
nutrients through their environments by depolymerizing
complex natural products. To identify bona fide eftectors
involved in host—fungal interactions, it is crucial to sepa-
rate effectors from enzymes used to support fungal phy-
siology. A few approaches, such as using expression to
filter candidate effectors directly involved in the interac-
tion and identifying proteins from apoplastic spaces [46]
and extracellular vesicles [47], are adopted to circumvent
this challenge. Moreover, a comprehensive pan-genome
analysis that defines the ancestral state of each effector
will add an evolutionary perspective to this puzzle.
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Uncovering underground fungal-plant interactions
Functional characterization of effectors among mycor-
rhizal fungi and soil-borne pathogens lags foliar patho-
systems due to an inherent difficulty in observing
underground interactions. In addition to testing hetero-
logous expression systems, particularly with the co-ex-
pression of effector and plant partners [48], several hairy
root transgene expression systems were established to
study mycorrhizal symbiosis and soil-borne patho-
gens [49].

Differentiating effector profiles for different interactions
There are notable differences in effector profiles be-
tween beneficial and pathogenic fungi. For example,
EMFs lost most cellulose-degrading enzymes, and
AMF's contain few plant cell wall modification enzymes
[16]. Endophytic fungi often contain plant CWDEs [50],
but in much smaller numbers than pathogenic fungi. A
cross-kingdom fungal pathogen, the F. oxysporum species
complex includes plant pathogens causing devastating
vascular wilt diseases, endophytes used as biocontrol
agents and plant-fitness promoters, as well as human
pathogens responsible for disseminated fusariosis and
blinding corneal infections in humans. With a conserved
core among these species, their accessory chromosomes
helped define distinct functions, making them an ex-
cellent model to establish a good understanding among
these different interactions (Figure 2).

Conclusion

Fungal effector biology will continue to be an important
topic for understanding diverse fungal-host interactions
that contribute to the health of our ecosystem. Such
knowledge will have practical implications, such as ef-
fector-mediated resistance breeding. The interplay be-
tween fungal effectors and the host microbiomes will
guide the potential design of healthy phytobiomes to
combat plant diseases or potential supplements to con-
trol human diseases. Still, many questions must be ex-
plored, including how are effectors co-ordinated to
facilitate host colonization and infection? Are effectors
from different fungal species or evolutionarily distant
micro-organisms antagonistic or synergistic during co-
colonization of the same host? What is the significance of
effectors conserved in plant pathogenic fungi and human
pathogenic fungi? These questions drive scientists to
producing innovative and high-quality research.
Bringing fungal effector biology from the laboratory to
the forefront of applied health solutions drives ad-
vancement in basic and translational discoveries.
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